Surface-Chemistry Effect on Cellular Response of Luminescent Plasmonic Silver Nanoparticles

نویسندگان

  • Shasha Sun
  • Chen Zhou
  • Sishan Chen
  • Jinbin Liu
  • Jing Yu
  • Jennifer Chilek
  • Liang Zhao
  • Mengxiao Yu
  • Rodrigo Vinluan
  • Bo Huang
  • Jie Zheng
چکیده

Cellular response of inorganic nanoparticles (NPs) is strongly dependent on their surface chemistry. By taking advantage of robust single-particle fluorescence and giant Raman enhancements of unique polycrystalline silver NPs (AgNPs), we quantitatively investigated effects of two well-known surface chemistries, passive PEGylation and active c-RGD peptide conjugation, on in vitro behaviors of AgNPs at high temporal and spatial resolution as well as chemical level using fluorescence and Raman microscopy. The results show that specific c-RGD peptide-αvβ3 integrin interactions not only induced endosome formation more rapidly, enhanced constrained diffusion, but also minimized nonspecific chemical interactions between the NPs and intracellular biomolecules than passive PEGylation chemistry; as a result, surface enhanced Raman scattering (SERS) signals of c-RGD peptides were well resolved inside endosomes in the live cells, while Raman signals of PEGylated AgNPs remained unresolvable due to interference of surrounding biomolecules, opening up an opportunity to investigate specific ligand-receptor interactions in real time at the chemical level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response Surface Methodology for Optimization of Green Silver Nanoparticles Synthesized via Phlomis Cancellata Bunge Extract

Green synthesis of metal nanoparticles is an interesting issue of nanoscience due to its simplicity and eco-friendliness. The present study describes a cheaper, non-toxic and simple route for biosynthesis of Silver nanoparticles using Phlomis cancellata Bunge extracts. Since the experimental conditions of this procedure play vital roles in the synthesis rate of the nanoparticles, a response sur...

متن کامل

Tunable Plasmonic Nanoparticles Based on Prolate Spheroids

Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...

متن کامل

Response Surface Methodology Modeling to Determine of Trace Amounts of Phenolic Compounds Using Silver Modified / Zero Valent Iron/ Fe3O4@G Nanocomposite

In this study, a simple and fast magnetic dispersive solid phase extraction methodology was developed G@Fe3O4/Fe/Ag nanoparticles for preconcentration and determine of phenolic compounds in water samples. The sorbent was characterized by assorted characterization method. The effects of diverse factor on the extraction process were studied thoroughly via design of experiment and desirability fun...

متن کامل

The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres.

Nanoscale surface corrugation strongly determines the plasmonic response of gold nanoparticles with dimensions of several tens of nanometres. Scattering spectra of individual spheres with a rough surface were found to red-shift and broaden. The plasmon modes exhibited quadrupole damping, in contrast to particles with smooth surfaces. Additionally, rougher spheres display a higher SERS activity,...

متن کامل

RIR-MAPLE deposition of plasmonic silver nanoparticles

Nanoparticles are being explored in many different applications due to the unique properties offered by quantum effects. To broaden the scope of these applications, the deposition of nanoparticles onto substrates in a simple and controlled way is highly desired. In this study, we use resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) for the deposition of metallic, silver na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014